

Unmasking APTs: Addressing Attribution Challenges in Evolving Attack Landscape

Aakanksha Saha, Jorge Blasco, Lorenzo Cavallaro, Martina Lindorfer

UNIVERSIDAD POLITÉCNICA DE MADRID

Researcher at TU Wien Masters from University of Utah Previously: Red Teamer @ MSFT Passionate about ML and security Enjoy Stargazing

Roadmap

Russia-backed hackers target German legislators: report

Farah Bahgat 03/26/2021

A "Ghostwriter" cyberattack affected seven Bundestag members and 31 state parliamentarians, according to a Spiegel report. The hackers reportedly launch campaigns that "align" with Russian interests.

DW Germany, 2021

Targeted vs. commodity malware

- Specific vs. Indiscriminate targeting
- Tailored tactics vs. Generic tactics
- Specific objective vs. Maximize potential profits

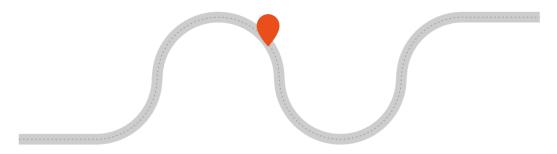
APTs are typically **well-funded**, **experienced teams of cybercriminals** that **target high-value organizations for specific objective** of data theft or espionage

What is (AP)threat attribution?

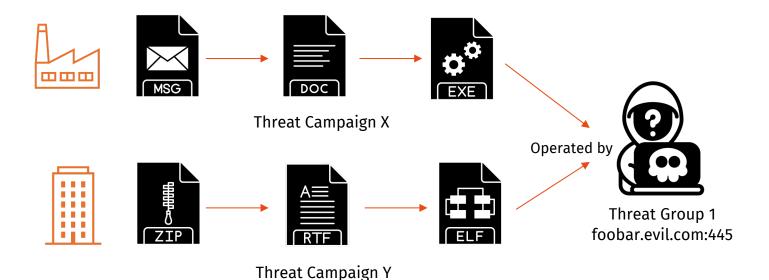
Associate a cyber-attack to an attacker Analysts link the activity to a known threat actor/group

In October 2020, the Council of the European Union announced sanctions imposed on Russian military intelligence officers, belonging to the 85th Main Centre for Special Services (GTsSS), for their role in the 2015 attack on the German Federal Parliament (Deutscher Bundestag). The 85th Main Centre for Special Services (GTsSS) is the military unit of the Russian government also tracked as APT28 (aka Fancy Bear, Pawn Storm, Sofacy Group, Sednit, and STRONTIUM).

So far..?

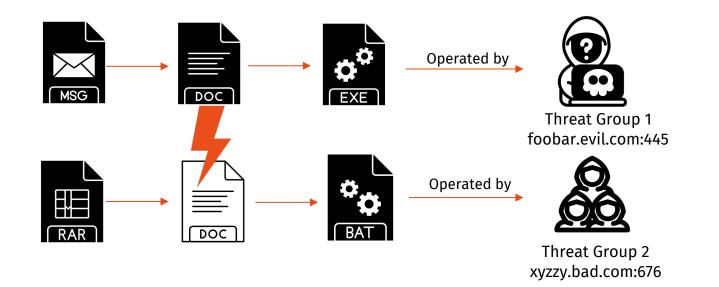

MITRE ATT&CK [®] Matrices Tactics Techniques Defenses CTI Resources Benefactors Blog						
GROUPS				Groups: 143		
Overview	ID	Name	Associated Groups	Description		
admin@338	G0018	admin@338		admin@338 is a China-based cyber threat group. It has previously used		
Ajax Security Team		C C		newsworthy events as lures to deliver malware and has primarily		
ALLANITE				targeted organizations involved in financial, economic, and trade policy, typically using publicly available RATs such as Poisonlvy, as well as		
Andariel				some non-public backdoors.		
Aoqin Dragon	G0130	Ajax Security Team	Operation Woolen-Goldfish,	Ajax Security Team is a group that has been active since at least 2010		
APT-C-36			AjaxTM, Rocket Kitten, Flying	and believed to be operating out of Iran. By 2014 Ajax Security Team		
APT1			Kitten, Operation Saffron Rose	transitioned from website defacement operations to malware-based cyber espionage campaigns targeting the US defense industrial base		
APT12				and Iranian users of anti-censorship technologies.		
APT16	G1000	00 ALLANITE	Palmetto Fusion	ALLANITE is a suspected Russian cyber espionage group, that has primarily targeted the electric utility sector within the United States and		
APT17						
APT18				United Kingdom. The group's tactics and techniques are reportedly similar to Dragonfly, although ALLANITEs technical capabilities have not		
APT19				exhibited disruptive or destructive abilities. It has been suggested that		
APT28				the group maintains a presence in ICS for the purpose of gaining understanding of processes and to maintain persistence.		
APT29						

MITRE Groups

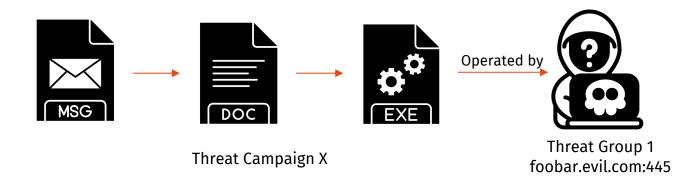


CrowdStrike Adversaries

Attribution is challenging!

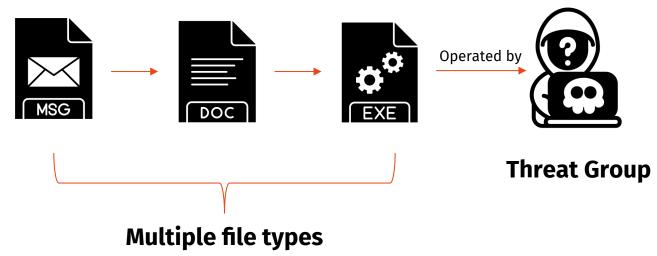


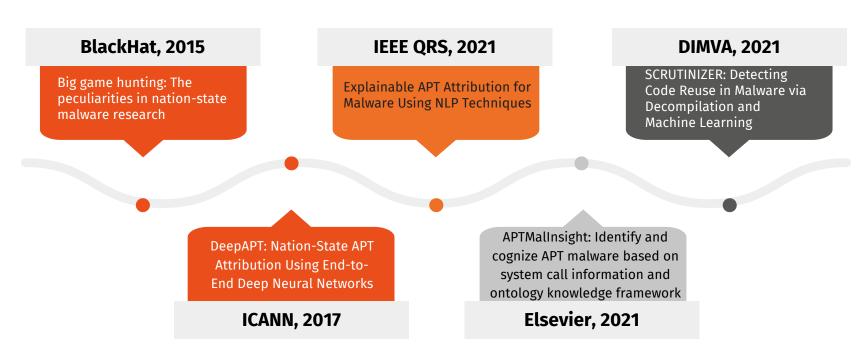
Campaign variation


 Incomplete understanding of adversary with vendors tracking groups from varied campaign perspectives [AT&T AlienLabs, 2021]

Shared similarity

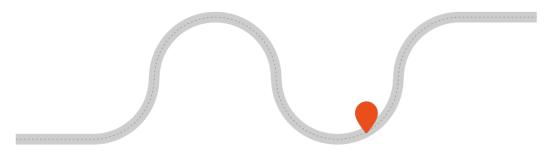
 Adoption of shared similarities, false flags and collaboration between subgroups results in inconsistent and erroneous attribution [Mandiant, 2023]

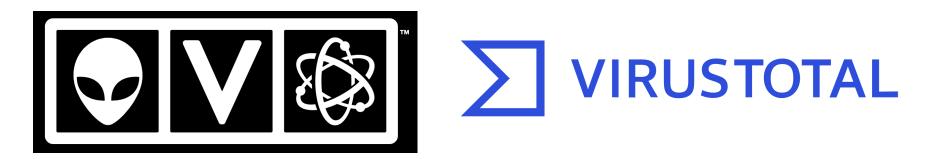

Heterogeneous files in attack chain


• Manual analysis of heterogenous files to identify the threat group [Mandiant, 2022]

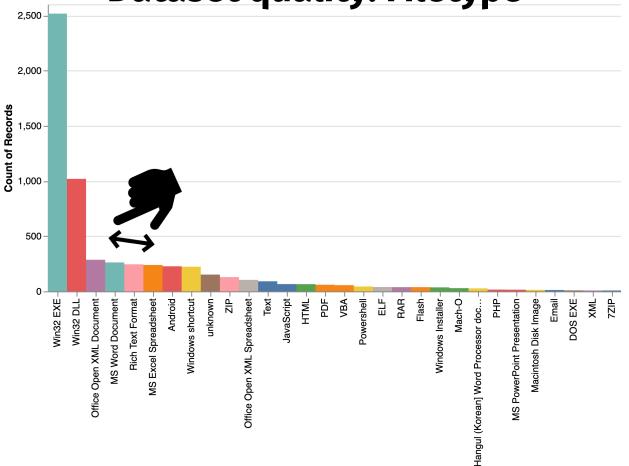
Putting it all together

Threat Campaign X

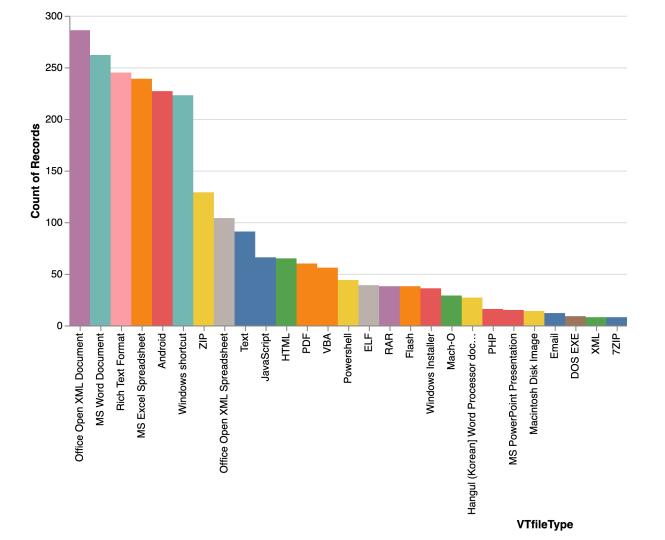

Malware based attribution research


Approach ADAPT Attribution of Diverse APT Samples

ADAPT Data Collection



APT dataset



- 6,455 samples (SHA256)
- 22+ file types
- 172 APT groups

Dataset quality: Filetype

VTfileType

Exploring the Malicious Document Threat Landscape: Towards a Systematic Approach to Detection and Analysis

Aakanksha Saha TU Wien Vienna, Austria aakanksha.saha@seclab.wien Jorge Blasco Universidad Politécnica de Madrid Madrid, Spain jorge.blasco.alis@upm.es Martina Lindorfer TU Wien Vienna, Austria martina@seclab.wien

Abstract-Despite being the most common initial attack vector, document-based malware delivery remains understudied compared to research on malicious executables. This limits our understanding of how attackers leverage document file formats and exploit their functionalities for malicious purposes. In this paper, we perform a measurement study that leverages existing tools and techniques to detect, extract, and analyze malicious Office documents. We collect a substantial dataset of 9.086 malicious samples and reveal a critical gap in the understanding of how attackers utilize these documents. Our in-depth analysis highlights emerging tactics used in both targeted and large-scale cyberattacks while identifying weaknesses in common document analysis methods. Through a combination of analysis techniques, we gain crucial insights valuable for forensic analysts to assess suspicious files, pinpoint infection origins, and ultimately contribute to the development of more robust detection models. We make our dataset and source code available to the academic community to foster further research in this area.

1. Introduction

Documents are a widely used method to deliver malicious payloads during a cyberattack: In 2016, the Microsoft Defender Security Research Team reported that 98% of Office-targeted attacks utilized malicious macros [43]. This dominance of macro-based threats was further corroborated by a recent ReasonLabs cybersecurity report, which identified them among the top 10 threats detected in 2022 [30]. Moreover, Microsoft's disclosure of 59 vulnerabilities, including zero-day exploits, in Word documents during 2023 highlights the criticality of ana-

Detector, which leverages bimodal machine learning models to combine visual and textual information for macro malware detection [69]. Cohen et al. presented a Structural Feature Extraction Methodology (SFEM) specifically targeted towards Office Open XML (OOXML) document formats, employing machine learning for malicious document identification [11]. A significant portion of document analysis research focuses on extracting and analyzing macro code. Extraction is typically achieved using tools like oletools [34], followed by training detection models. These are based on techniques like Latent Semantic Indexing (LSI) [48], Natural Language Processing (NLP) using Bag-of-Words and Term Frequency-Inverse Document Frequency (TF-IDF) [47], or identification of specific macro code keywords (e.g., AutoOpen and Shell) [29]. Beyond code analysis, recent work by Casino et al. explores the potential of detecting deceptive information within documents by constructing lightweight signatures from file components (e.g., "enable editing" and "enable content") for malware detection [8]. Ruaro et al. took a more targeted approach, focusing on symbolic execution for automated deobfuscation and analysis of Excel 4.0 macros (XL4) prevalent in Microsoft Excel files [60].

While existing research primarily focused on the binary classification of documents as either "malicious" or "benign," we argue that a comprehensive understanding of the evolving landscape of malicious documents is required for effective defense strategies. This is mainly because of two key factors: (1) *The diverse nature of file formats* (e.g., OLE and OOXML) *and macro types* (e.g., Visual Basic for Applications (VBA) macros [44] and Excel 4.0 macros [53]) presents challenges for extracting file metadata and macro code. This variety allows attackers

WORMA, Euro S&P Workshop, 2024

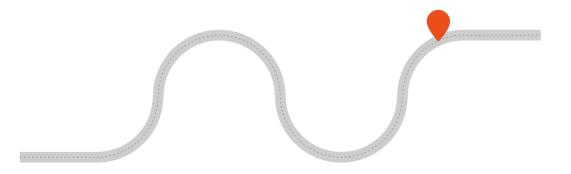
Dataset quality: Group label

2,260 (35.01%) have more than 1 label

Threat Group Label	Number of Aliases	Number of Sample
Lazarus	29	527
Gamaredon	11	446
Transparent Tribe	9	403
APT41	16	278
Turla	21	203
APT28	23	169
APT29	15	224

Dataset (re)-labeling

- Malpedia Threat Actor Inventory and MITRE to resolve conflicts
- Standardize aliases
- Consistent naming convention
- Non-unique names and non-APT samples


Campaign Labeled Dataset

MITRE ATT&CK°	Matrices 🕶 Tactics 🕶 Techniques 👻 Defenses 👻 CTI 👻 Resources 👻 Benefactors Blog 🗹 Se						
CAMPAIGNS			Campaigns: 24				
Overview	ID	Name	Description				
2015 Ukraine Electric Power Attack	C0028	2015 Ukraine Electric Power	2015 Ukraine Electric Power Attack was a Sandworm Team campaign during which they used BlackEnergy (specifically BlackEnergy3) and KillDisk to target and disrupt transmission and distribution substations within				
2016 Ukraine Electric Power Attack	Attack the Ukrainian power grid. This campaign was the first major public attack conducted against the Ukrainian power grid by Sandworm Team.						
C0010	C0025 2016 Ukraine 2016 Ukraine Electric Power Attack was a Sandworm Team campaign during which they used Industroy						
C0011		Electric Power malware to target and disrupt distribution substations within the Ukrainian power grid. This campaign was the					
C0015		Attack second major public attack conducted against Ukraine by Sandworm Team.					
C0017	C0010 C0010		C0010 was a cyber espionage campaign conducted by UNC3890 that targeted Israeli shipping, government,				
C0018			aviation, energy, and healthcare organizations. Security researcher assess UNC3890 conducts operations in support of Iranian interests, and noted several limited technical connections to Iran, including PDB strings and				
C0021			Farsi language artifacts. C0010 began by at least late 2020, and was still ongoing as of mid-2022.				
C0026	7 COULT COULT COULT COULT Was a suspected cyber esplora Plicto		C0011 was a suspected cyber espionage campaign conducted by Transparent Tribe that targeted students at				
C0027			universities and colleges in India. Security researchers noted this campaign against students was a significant				
CostaRicto			shift from Transparent Tribe's historic targeting Indian government, military, and think tank personnel, and assessed it was still ongoing as of July 2022.				

To help the community...

- 6,134 samples assigned to 92 groups
- 230 samples, 17 APT groups, 22 APT campaigns

What's next?

ADAPT 2.0

- Gain invaluable insights from real-world defenders that's YOU!
- Explore how YOU, as analysts, skillfully identify malicious activities and untangle complexities.

Conducted 15 (+3) interviews with participants from diverse industries, expertise, and locations.

Attributing APTs: Expert Insights

https://secpriv.wien/adapt/

Key Highlights

- Systematic attribution approach by disassociating campaign attribution and group attribution
- Considering the diverse array of file types in the evolving APT landscape is promising
- Effective knowledge exchange between academia and industry can lead to impactful research outcomes

UNIVERSIDAD POLITÉCNICA DE MADRID

References

[1] <u>https://securityaffairs.com/116001/apt/german-parliament-bundestag-russia-hackers.html</u>
[2] <u>https://www.mandiant.com/resources/blog/unc2452-merged-into-apt29</u>
[3] <u>https://www.mandiant.com/resources/blog/north-korea-cyber-structure-alignment-2023</u>
[4] <u>https://www.mandiant.com/resources/blog/unc2452-merged-into-apt29</u>

[4] <u>https://cybersecurity.att.com/blogs/labs-research/a-global-perspective-of-the-sidewinder-apt</u>
 [5] <u>https://blog.talosintelligence.com/whats-with-shared-vba-code/</u>

[6] <u>https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/</u>
 [7] <u>https://scikit-</u>

learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
[8] https://huggingface.co/sentence-transformers

[9] <u>https://scikit-</u>

<u>learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#</u>

[10] <u>https://attack.mitre.org/campaigns/</u>

[11] <u>https://www.ncsc.gov.uk/files/Advisory-APT29-targets-COVID-19-vaccine-development.pdf</u>

[12] https://blogs.jpcert.or.jp/en/2018/07/malware-wellmes-9b78.html

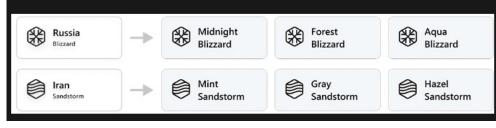
[13] <u>https://learn.microsoft.com/en-us/microsoft-365/security/intelligence/microsoft-threat-actor-naming?view=o365-worldwide</u>

[14] <u>https://attack.mitre.org/groups/</u>

Dataset quality: Group label

2,260 (35.01%) have more than 1 label

Previous name	New name	Origin/Threat	Other names
ACTINIUM	Aqua Blizzard	Russia	UNC530, Primitive Bear, Gamaredon
AMERICIUM	Pink Sandstorm	Iran	Agrius, Deadwood, BlackShadow, SharpBoys
BARIUM	Brass Typhoon	China	APT41
BISMUTH	Canvas Cyclone	Vietnam	APT32, OceanLotus
BOHRIUM	Smoke Sandstorm	Iran	
BROMINE	Ghost Blizzard	Russia	Energetic Bear, Crouching Yeti
CERIUM	Ruby Sleet	North Korea	
CHIMBORAZO	Spandex Tempest	Financially motivated	TA505
CHROMIUM	Charcoal Typhoon	China	ControlX
COPERNICIUM	Sapphire Sleet	North Korea	Genie Spider, BlueNoroff
CURIUM	Crimson Sandstorm	Iran	TA456, Tortoise Shell


Research Threat intelligence Microsoft Defender Threat actors + 7 min read

Microsoft shifts to a new threat actor naming taxonomy

By John Lambert, Distinguished Engineer and Corporate Vice President, Microsoft Threat Intelligence

Threat actors within the same weather family are given an adjective to distinguish actor groups that have distinct TTPs, infrastructure, objectives, or other identified patterns. The examples below show how the naming system works for Russia and Iran.

