
From code to connected device:
Building and maintaining embedded
Linux distributions

IT-S NOW, 06.06.2024

Josef Holzmayr
Head of Developer Relations, Mender.io

Hello, my name is Josef.

I am a recovering
embedded developer.

Some technical details about me

Street credibility

Yocto Project Community Manager & Ambassador

OpenEmbedded Social Media Manager

Kernel contributor (yup, really!)

Fame

https://www.linkedin.com/in/josef-holzmayr

josef.holzmayr@northern.tech

https://fosstodon.org/@theyoctojester

https://www.linkedin.com/in/josef-holzmayr/
https://fosstodon.org/@theyoctojester

Important note concerning this presentation!

Image attribution: User:-donald- - Wikimedia Commons

Every form of interaction will be
rewarded
… until I run out of chocolate.

Some ideas:
- Good: Tell me what you like.
- Better: Tell me what you don’t like.
- Best: Tell me where I am wrong.
- Helpful: Ask for a clarification.
- Practical: Ask for chocolate.

https://commons.wikimedia.org/wiki/User:-donald-

I will not talk about these things:

- When you should use Linux, or not
- What an embedded or connected device is
- Why you need OTA updates

…

All of this has been discussed many times already,
and will be many more.

Embedded Linux is already ubiquitous.

https://wiki.yoctoproject.org/wiki/Project_Users

https://wiki.yoctoproject.org/wiki/Project_Users

We now have about 25 minutes
to build and maintain a full Linux
distribution.
Disclaimer: therefore the shown command snippets are just *core concepts*

Things that you really want

License tracing
→ Shipping a Linux based device means that you are “conveying” copies as stated
by most open source licenses, so you need to abide the rules.

SBOM generation
→ Keeping logs about what you shipped is a crucial first step for vulnerability
management! Oh, and required by regulations in many cases too.

CVE checking
→ Don’t hand out software which includes already *KNOWN* problems!

The toolbox

Step 1: Build and run

Raw poky 1 - build

$ mkdir itsnow && cd itsnow
$ git clone -b scarthgap git:// git.yoctoproject.org/poky.git
$ source poky/oe-init-build-env
$ time bitbake core-image-minimal

(you might want to watch top or htop now 😁)

<snip/>
real 61m12.114s
user 0m16.621s
sys 0m4.017s
$

http://git.yoctoprojec.org/poky.git

Raw poky 2 - run

$ runqemu nographic slirp
<boot, scroll, boot, scroll/>

Poky (Yocto Project Reference Distro) 5.0.1 qemux86-64 /dev/ttyS0

qemux86-64 login: root

WARNING: Poky is a reference Yocto Project distribution that should be used
for
testing and development purposes only. It is recommended that you create
your
own distribution for production use.

root@qemux86-64:~#

Step 2: Customize

Example: systemd & bc

$ cat <<EOF >> conf/local.conf
 INIT_MANAGER = "systemd"
 IMAGE_INSTALL:append = " bc"
 IMAGE_FSTYPES:append = " tar.bz2"
 EOF

Most things can be customized through variables, such as the init manager choice,
the selection of packages to be installed or the filesystem of the resulting system
image.

The key concept here is called metadata.

It defines all aspects of the build process, such as

- Source code URLs and revisions
- Configuration files and fragments
- Building, packaging and deployment stages
- …

Example: layer, recipe and image

$ bitbake-layers create-layer ../meta-itsnow
$ bitbake-layers add-layer ../meta-itsnow
$ mkdir -p ../meta-itsnow/recipes-itsnow/images
$ cp ../poky/meta/recipes-core/images/core-image-minimal.bb \
 ../meta-itsnow/recipes-itsnow/images/core-image-itsnow.bb

$ bitbake core-image-itsnow
$ runqemu nographic slirp

Example: build for Raspberry Pi 4

$ git clone -b scarthgap https://github.com/agherzan/meta-raspberrypi \
 ../meta-raspberrypi
$ bitbake-layers add-layer ../meta-raspberrypi
$ cat <<EOF >> conf/local.conf
 MACHINE = "raspberrypi4"
 EOF

Board support packages for Yocto are usually provided as layers.

https://github.com/agherzan/meta-raspberrpi

All of the relevant metadata should be under
version control.

- References and revisions of third party layers
- Custom layers including recipes
- MACHINE and DISTRO selection
- Eventual local.conf entries

You get: reproducibility!

Source: https://www.yoctoproject.org/reproducible-build-results/ (as of 2024-06-02)

https://www.yoctoproject.org/reproducible-build-results/

Step 3: Maintain

Yocto Magic 1: license compliance

$ cat <<EOF >> conf/local.conf
 COPY_LIC_MANIFEST = "1"
 COPY_LIC_DIRS = "1"
 LICENSE_CREATE_PACKAGE = "1"

 INHERIT += "archiver"
 ARCHIVER_MODE[src] = "original"
 EOF

Include the license texts and copyright notices, archive the sources used in the
build.

Yocto Magic 2: SBOM generation

$ cat <<EOF >> conf/local.conf
 INHERIT += "create-spdx"

 SPDX_INCLUDE_SOURCES = "1"
 EOF

Create an SPDX-style SBOM, including descriptions of the individual files used in
the build.

Yocto Magic 3: enable CVE checking

$ cat <<EOF >> conf/local.conf
 INHERIT += "cve-check"
 EOF

Yocto offers a built-in CVE check at build time. Note that this might require fine
tuning per use case!

Step 4: Deploy and manage

Mender - overview

Integrated solution

Both client- and server-side are to
aligned to provide industrial-grade fleet
and device lifecycle management.

Mender - on connected device

OS updates
Provides full image updates with
robust and failsafe mechanisms
should an update fail for any
reason.

Application updates
Highly customizable:
- containers
- binary applications and assets
- sub-controller firmware.

Enabling Mender

$ git clone https://github.com/mendersoftware/meta-mender \
 ../meta-mender
$ git clone https://github.com/mendersoftware/meta-mender-community \
 ../meta-mender-community
$ bitbake-layers add-layer ../meta-mender/meta-mender-core
$ bitbake-layers add-layer ../meta-mender-community/meta-mender-raspberrypi
$ cat <<EOF >> conf/local.conf
 INHERIT += "mender-full"
 EOF

Mender supports a streamlined integration process through metadata layers.
Example board: Raspberry Pi 4

https://github.com/mendersoftware/meta-mender
https://github.com/mendersoftware/meta-mender-community

Building Mender

$ bitbake core-image-minimal
$ ls tmp/deploy/images/raspberrypi4
 <snip/>
 core-image-full-cmdline-raspberrypi4.mender
 core-image-full-cmdline-raspberrypi4.sdimg
 <snip/>

This configures the build to generate an initial image and an artifact.

.sdimg: flash to SD card

.mender: upload to your Hosted Mender account to deploy

Things we skipped

- Automated build setup: kas, git submodules,...
- MACHINE and DISTRO setup
- Release cadence & LTS
- Mender account and deployment process
- CI/CD pipeline
- Build time optimization and caching
- …

Summary

Plan for maintenance and sustainability

Creating a sustainable Linux distribution for a
connected device and maintaining it is neither
witchcraft nor rocket science!

The only really important rule is: understand your
requirements, and then plan accordingly.

The Yocto Project and Mender are two powerful
building blocks you can use and rely on.

https://www.yoctoproject.org/
https://mender.io/

Learn more
Get started now

docs.mender.io/getting-started

Join the Mender Hub community

hub.mender.io

Mender on Github

github.com/mendersoftware

contact@mender.io

mender.io

company/northern.tech

@mender_io

Q & A

Josef Holzmayr
Head of Developer Relations, Mender & Community
Manager, The Yocto Project
https://github.com/TheYoctoJester/
https://www.linkedin.com/in/josef-holzmayr/

https://github.com/TheYoctoJester/
https://www.linkedin.com/in/josef-holzmayr/

Contact us
mender.io/contact-us

Thank you

